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Abstract. The effect of inertia on the Yih–Marangoni instability of the interface between two liquid layers in the
presence of an insoluble surfactant is assessed for shear-driven channel flow by a normal-mode linear stability
analysis. The Orr–Sommerfeld equation describing the growth of small perturbations is solved numerically sub-
ject to interfacial conditions that allow for the Marangoni traction. For general Reynolds numbers and arbitrary
wave numbers, the surfactant is found to either provoke instability or significantly lower the rate of decay of
infinitesimal perturbations, while inertial effects act to widen the range of unstable wave numbers. The nonlinear
evolution of growing interfacial waves consisting of a special pair of normal modes yielding an initially flat inter-
face is analysed numerically by a finite-difference method. The results of the simulations are consistent with the
predictions of the linear theory and reveal that the interfacial waves steepen and eventually overturn under the
influence of the shear flow.
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1. Introduction

In a companion article [1], a numerical method was presented for investigating the effect of
inertia on the Yih-Marangoni instability of the two-layer channel flow. Results for selected
case studies in which either the surfactant concentration or the interface are perturbed from
the base-state configuration suggested that the surfactant-induced Marangoni instability per-
sists at non-zero Reynolds numbers, though inertial effects have a mild effect on the growth
rates deduced from the amplitude of growing interfacial waves. In this article, these numerical
results are put on a rigorous footing by performing a formal normal-mode stability analysis
of the two-layer channel flow, accounting for the effect of fluid inertia and surfactant trans-
port.

The stability analysis presented in this article extends a voluminous literature on the Yih
interfacial instability in unidirectional viscous flow in the absence of surfactants (e.g., [2]), as
well as recent work by Frenkel and Halpern [3,4] and Blyth and Pozrikidis [5] who addressed
the problem under the auspices of the lubrication approximation, which is applicable to long
waves, and Stokes flow, which is applicable to arbitrary waves. In the presence of fluid inertia,
the normal modes are composite eigenfunctions of the Orr–Sommerfeld equation, which is to
be solved subject to the usual wall no-slip and no-penetration boundary conditions on the
walls, as well as an interfacial condition that accounts for variations in surface tension and
Marangoni tractions due to an insoluble surfactant. In the case of Stokes flow, two normal
modes arise for a given set of flow conditions: the Yih mode due to viscosity stratification
inducing a jump in the interfacial shear, and the Marangoni mode associated with the pres-



330 M.G. Blyth and C. Pozrikidis

ence of the surfactant. In contrast, at finite Reynolds numbers, there is an infinite number of
normal modes, and the most dangerous Yih and Marangoni modes are identified by param-
eter continuation with respect to the Reynolds number.

In Section 2, the linear stability problem is formulated in terms of two companion
Orr–Sommerfeld equations for the upper and lower fluid; in Section 3, numerical methods are
discussed for solving the generalized eigenvalue problem; in Section 4, the combined effect of
fluid inertia and surfactant is illustrated; and in Section 5, the predictions of the linear sta-
bility theory are successfully compared with numerical simulations. An overview of the new
findings and outlook for further work is presented in the concluding Section 6.

2. Formulation of the linear stability problem

We consider the flow of two adjacent liquid layers in a horizontal channel confined between
two parallel walls located at y = −h1, h2; the unperturbed flat interface is located at y = 0,
as illustrated in Figure 1. By convention, the subscripts 1 and 2 refer to the lower or upper
fluid, respectively. The channel walls move in the horizontal direction, x, with velocities U1

and U2, generating a Couette-like shear flow in the absence of a streamwise pressure gradi-
ent. The interface is occupied by an insoluble surfactant with surface concentration �, which
is convected and diffuses over the interface, but not into the bulk of the fluids, to locally alter
the surface tension, γ . To isolate the effects of surfactant and inertia, we consider fluids with
equal densities, whereupon gravity plays no role.

In the base-state undisturbed configuration, the interface is flat, the surfactant concentra-
tion is uniform and equal to �0, corresponding to the base-state surface tension γ0, and the
velocity profile is piecewise linear across the channel. To assess the stability of the flow sub-
ject to periodic perturbations with wavelength L, we pursue a linear, normal-mode stability
analysis. To simplify the calculations, we describe the motion in a frame of reference moving
with the interfacial velocity UI = (rU1 +λU2)/(r+λ), where λ=µ2/µ1 is the viscosity ratio,
and r=h2/h1 is the layer thickness ratio.

The flow in both layers is governed by the Navier–Stokes equation and the continuity
equation for incompressible fluids, subject to the no-slip and no-penetration condition at the
walls. At the interface, the traction undergoes a discontinuity given by

�f ≡ (σ (1)−σ (2)) ·n =γ κ n − ∂γ

∂l
t, (2.1)

Figure 1. Schematic illustration of two-layer flow in a channel, showing the position of the perturbed interface,
described by y=η(x, t). The unit vector normal to the interface, n, points into the lower fluid 1, and the unit tan-
gent vector, t, points in the direction of increasing arc length l. The lower and upper plates move parallel to the x
axis with velocities U1 and U2.
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where σ (j) is the Newtonian stress tensor in the j th fluid, n is the unit normal vector pointing
into the lower fluid 1, t is the unit tangential vector, κ=−n ·dt/dl is the interfacial curvature
in the xy plane, and l is the arc length increasing in the direction of t.

The surfactant surface concentration �(x, t), evolves according to the transport equation

d�
dt

+ ∂(ut �)

∂l
=−� κ un+Ds ∂

2�

∂l2
, (2.2)

where ut = u · t and un = u · n are the interfacial velocities in the directions of the tangential
and normal vector, respectively, and Ds is the surface surfactant diffusivity (e.g., [6,7]). The
derivative d/dt on the left-hand side of (2.2) expresses the rate of change of a variable follow-
ing the motion of interfacial nodes moving with the component of the fluid velocity normal
to the interface. Since the surfactant diffusivity is typically small, we take Ds =0 and account
for the effect of convection alone.

Next, we introduce dimensionless variables reducing lengths by the lower-layer thickness,
h1, time by the capillary scale h1µ1/γ0, pressure by γ0/h1, the surfactant concentration by
�0, and the surface tension by γ0, where µ1 is the lower-fluid viscosity. Henceforth, all vari-
ables will be tacitly assumed to be dimensionless according to this convention.

In the lower layer extending over −1 ≤ y≤ 0, the base-state x and y velocity components
are given by u(0)1 = sy, v(0)1 =0; in the upper layer, extending over 0≤y≤ r, the velocity com-
ponents are u(0)2 = (s/λ)y, v(0)2 =0, where

s≡ µ1

γ0

λ

λ+ r (U2 −U1) , (2.3)

is the dimensionless interfacial shear rate of the lower fluid, playing the role of a capillary
number.

The formulation of the linear stability problem at hand was discussed in detail by Frenkel
and Halpern [3,4]. In the remainder of this section, we recapitulate the basic formulation and
state the governing equations.

A perturbation displaces the otherwise flat interface to a position described by y=η(x, t),
where |η| is assumed to be small. In the case of a normal-mode disturbance with wave num-
ber k, the waveform of the interfacial elevation is η(x, t)=A1 exp(ik[x − ct ]), where A1 is a
complex amplitude and c=cr + ici is the complex wave speed. The stream function, pressure,
and surfactant concentration are expressed in the corresponding forms

(
ψj , pj , �

)
=

(
ψ
(0)
j , p(0), �0

)
+

(
ψ
(1)
j (y), p

(1)
j (y), �1

)
exp(ik[x− ct ]), (2.4)

where j = 1,2 refers to fluids 1 and 2 respectively. The disturbance streamfunction, ψ(1)j ,
is defined so that the x and y velocity components in the j th fluid derive from the usual
relations u(1)j = ∂ψ(1)j /∂y and v

(1)
j =−∂ψ(1)j /∂x. Substituting (2.4) in the non-dimensionalized

Navier–Stokes equation and linearizing, we arrive at the standard Orr–Sommerfeld equation.
In dimensionless form, this reads

λj

( d2

dy2
−k2

)2
ψ
(1)
j = ik

Re
Ca

[
(u
(0)
j − c)

( d2

dy2
−k2

)
ψ
(1)
j −ψ(1)j

d2u
(0)
j

dy2

]
, (2.5)

where λ1 = 1, λ2 = λ, Re = ρV h1/µ1 is the Reynolds number, Ca =µ1V/γ0 is the capillary
number, and V is an appropriate reference velocity. The ratio Re/Ca on the right-hand side
of (2.5) is equal to ρh1γ0/µ

2
1, independent of V . When U2>U1, it is physically meaningful to
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define V =UI −U1, whereupon Ca reduces to the dimensionless shear rate, s, defined in (2.3).
This choice will be tacitly assumed in the remainder of our discussion.

Linearizing the kinematic condition at the interface, D[y − η(x, t)]/Dt = 0, where D/Dt
is the material derivative, we find A1 =ψ

(1)
1 (0)/c. Requiring that the velocity is continuous

across the interface yields the conditions

ψ
(1)
1 (0)=ψ(1)2 (0), λ

(dψ(1)1

dy
− dψ(1)2

dy

)
y=0

= s

c
(1−λ)ψ(1)1 (0), (2.6)

where a prime indicates differentiation with respect to y. Linearizing the normal component
of the interfacial force balance (2.1) and eliminating the interfacial pressures using the x com-
ponent of the momentum equation, we obtain

λ
( d3ψ

(1)
2

dy3
−3k2 dψ(1)2

dy

)
y=0

−
( d3ψ

(1)
1

dy3
−3k2 dψ(1)1

dy

)
y=0

=−i
k3

c
ψ
(1)
2 (0). (2.7)

Linearizing the transport Equation (2.2), we obtain an expression for the surfactant con-
centration eigenfunction,

c�1 =
(dψ(1)1

dy
+ s

c
ψ
(1)
1

)
y=0

. (2.8)

Substituting this expression in the tangential component of the interfacial stress balance, we
find

λ
( d2ψ

(1)
2

dy2
+k2ψ

(1)
2

)
y=0

−
( d2ψ

(1)
1

dy2
+k2ψ

(1)
1

)
y=0

= iMa
k

c

( dψ(1)1

dy
+ s

c
ψ
(1)
1

)
y=0

, (2.9)

where Ma =E�0/γ0 is the Marangoni number, and E is the surface elasticity defined from
the linear interface constitutive equation γ =γ0 −E(�−�0). Finally, to satisfy the no-slip and
no-penetration conditions at the upper and lower walls, we require

ψ
(1)
1 (−1)=

(dψ(1)1

dy

)
y=−1

=ψ(1)2 (r)=
(dψ(1)2

dy

)
y=r

=0. (2.10)

The task now is to solve the two Orr–Sommerfeld equation (2.5) in each fluid, subject to con-
ditions (2.6–2.10). The complex phase velocity of a perturbation depends on the reduced wave
number, k, viscosity ratio, λ, layer depth ratio, r, shear parameter s or capillary number Ca,
Reynolds number, Re, and Marangoni number Ma.

3. Numerical methods

The Orr–Sommerfeld equation (2.5) accompanied by the boundary conditions (2.6–2.10) was
solved numerically using a Chebyshev tau method (e.g., [8,9]). To implement the method, we
map each of the two fluid regions −1 ≤ y≤ 0 and 0 ≤ y≤ r onto the standard interval −1 ≤
yj ≤1, for j =1,2, writing

y1 =2
(
y+ 1

2

)
in fluid 1, y2 = 2

r

(
y− r

2

)
in fluid 2. (3.1)

Next, we expand the stream function within each fluid in a truncated series of Chebyshev
polynomials, Tk(yj ), by setting

ψ
(1)
j (yj )=

Nj∑
k=0

ajk Tk(yj ), (3.2)
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for j=1,2, where ajk are unknown coefficients, and N1, N2 are specified truncation levels for
each layer. Substituting (3.2) in (2.5) for j =1,2, and projecting the resulting equations onto
Tm(yj ) for m=0, . . .Nj −4 under the Chebyshev inner product,

〈Tm(x), f (x)〉 =
∫ 1

−1

1√
1−x2

Tm(x)f (x)dx, (3.3)

we derive a system of N1 +N2 − 6 equations for the N1 +N2 + 2 coefficients ajk. All inte-
grals involving Chebyshev polynomials and their derivatives in the projection may be com-
puted exactly using known identities and recursive relations (e.g., [10, pp. 159–161]). A further
set of 8 equations are obtained by substituting (3.2) in the boundary conditions (2.6–2.10). To
simplify the calculation, the quadratic in c term in the tangential condition (2.9) is eliminated
by substituting for ψ(1)1 (0) using the second equation in (2.6).

The complete set of equations is finally assembled into the linear system

A ·w = cB ·w, (3.4)

where w = (a10, . . . , a1N1 , a20, . . . , a2N2)
T , and A, B are square matrices of linear size N1 +

N2 +2. The generalized eigenvalue problem expressed by (3.4) was solved using a NAG rou-
tine based on the QZ algorithm to obtain the complex phase velocity, c, and thus extract the
growth rate, σ = kci . To filter out spurious eigenmodes, the truncation levels N1 and N2 are
increased until genuine modes are clearly identified. Typically, N1 =N2 = 25 terms are suffi-
cient to obtain a good level of accuracy at small and moderate Reynolds numbers. However,
larger values are required to accurately resolve the eigenfunctions at high Reynolds numbers.
For example, when Re=1,000 it is necessary to take N1 =N2 =45.

A first check of the accuracy of the numerical method was performed by comparing the
present results with available results for the plane Couette flow of a homogeneous fluid (e.g.,
[11]), and confirming excellent agreement. A further check was performed by comparing the
growth rates of the two-layer channel flow with those obtained by an alternative shooting
method based on fourth-order Runge–Kutta integration (e.g., [12, p. 452]). In this method,
an initial guess is made for c, and the Orr–Sommerfeld equation in the lower fluid is inte-
grated forward from y1 = −1, corresponding to the lower wall, to y1 = 1, corresponding to
the interface. The integration in the upper fluid is then initialized at y2 = −1, with starting
values provided by the interfacial boundary conditions (2.6–2.9), and continued up to y2 =1.
An updated value of c is calculated using Newton’s method and the procedure is iterated
until convergence is achieved to within a prescribed tolerance. Excellent agreement was found
between the two numerical procedures at low Reynolds numbers, providing further assurance
that only genuine eigenmodes are retained in the solution of (3.4). At higher Reynolds num-
bers, the shooting method falters as boundary layers arise. In contrast, accurate solutions with
the Chebyshev tau method can be obtained without difficulty at high Reynolds numbers.

To gain further confidence in the spectral code, growth rates were computed for an inter-
face that is devoid of surfactants, Ma = 0. According to Yih’s [13] long-wave analysis, when
kRe is small, ci � kReJ/(λCa) where the group J is defined by a lengthy expression. With
r=1, λ=0·1, s=Ca=1/11, J =4×10−4, in Figure 2 we plot ci for the most dangerous mode
against kRe/(λCa), together with a straight line of slope 4×10−4 passing through the origin.
The excellent agreement with Yih’s approximate result near the origin confirms the accuracy
of the numerical code. We note, in particular, that instability at the interface arises only in
the presence of fluid inertia.

Renardy [14] investigated the stability of the two-layer flow in the absence of surfactants,
and compared her results with the earlier results of Hooper and Boyd [15] for a sheared
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Figure 2. Comparison of the present results for arbitrary wave numbers with Yih’s results for long waves on a clean
interface for r = 1, λ= 0·1, s= Ca = 1/11, and Ma = 0. The solid line corresponds to the present numerical results,
and the broken line is Yih’s long-wave approximation, ci �4×10−4 kRe/(λCa).
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Figure 3. Graph of the growth rate kci versus wave number kHB for λ= 2·0, r = 2·0, Re = 133·0, and s = Ca =
115·725. The solid line is for Ma = 0, and the broken and dot-dashed lines are, respectively, for the first and sec-
ond modes when Ma=0·1.

interface between two unbounded fluids. As the separation between the upper and lower walls
increases, a band of unstable wave numbers eventually appears, matching a band identified by
Hooper and Boyd [15] in the absence of confining walls. Our results are in excellent agree-
ment with those shown in Figure 1 of Renardy [14] for a clean interface and parameter values
λ= 2·0, r = 2·0, Re = 133·0, s= Ca = 115·725 and Ma = 0, corresponding to Renardy’s alter-
native Reynolds number Re1 =798·0. Under the implicit assumption that the velocity scale is
V =UI −U1, Re1 is related to our Reynolds number by Re=λRe1/[(λ+r)(1+r)]. The reduced
growth rate, kci , is shown with the solid line in Figure 3. Note that for ease of compari-
son with Renardy’s [14] Figure 1, the scaled wave number, kHB , was adopted as the ordinate,
where kHB =k/Re1/2. In particular, the boundaries between stable and unstable wave numbers
coincide with those presented in Renardy’s figure.

4. Results and discussion

Precisely two normal modes arise under conditions of Stokes flow: the Marangoni mode asso-
ciated with the presence of the surfactant, and the Yih mode associated with an interface free
of contaminants. A clean interface is always stable, whereas a contaminated interface becomes
unstable over a certain range of parameter values. When inertia is present, there is an infinite
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number of normal modes; lowering the Reynolds number in a continuous manner allows us
to identify the Yih and Marangoni modes.

The effect of surfactants in the presence of fluid inertia is demonstrated by the broken and
dot-dashed lines in Figure 3, corresponding to the two most dangerous modes for Ma =0·1.
It is interesting that the dashed line virtually lies on top of the solid line all the way up to
kHB �0·3, so the surfactant has little effect on the growth rate of the Yih mode. However, in
the narrow window of stable wave numbers around kHB =0·12, the growth rate of the second
mode, represented by the dot-dashed line, is significantly higher than that in the absence of
surfactant. Over this narrow range, the surfactant noticeably reduces the rate at which small
perturbations decay. When Ma=0, the flow is stable to wave numbers above a critical value
kcHB ≈ 1·2. This critical threshold increases when surfactant is introduced; accordingly, the
dashed line crosses the axis at a higher wave number. Large values of Re1 correspond to a
large separation between the upper and lower walls, permitting comparison with the predic-
tions for unbounded flow studied by Hooper and Boyd [15]. For a contaminated interface, the
increase in the critical value kcHB may indicate a similar broadening of the unstable range of
wave numbers in the case of unbounded flow.

Figure 4 shows the neutral stability curve in the (Re, k) plane for Ma = 1·0, r=2·0, λ=
0 ·5, and s = 2 corresponding to Ca = 2 ·0. Previous stability analysis for Stokes flow has
revealed that introducing a surfactant opens up a range of unstable wave numbers extend-
ing from zero up to the critical cut-off value kcrit =1·65. The results shown in Figure 4 dem-
onstrate that inertial effects act to widen the range of unstable wave numbers. Moreover,
at the critical value Recrit = 12·63, a second small window of stable wave numbers appears,
extending upwards in Re to form an island of stable modes, with the island nose located at
(Recrit, kcrit)= (12·63,0·37).

To examine the origin of the stable loop as Re passes through Recrit, in Figure 5 we plot
the growth rates of the two most unstable modes against the Reynolds number, up to and
beyond Recrit, for k= 0·37, corresponding to the stable island nose. At Re = 0, linear stabil-
ity for Stokes flow predicts the growth rates −0·0955 and 0·0479, respectively, for the Yih and
Marangoni mode. The present results show that the Marangoni mode remains dominant over
the range of Reynolds numbers considered, and passes through zero at Re=12·63 to inaugu-
rate the stable loop.
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Figure 4. Neutral stability curves separating stable from unstable wave numbers for Ma = 1·0, r = 2·0, λ= 0·5, and
s=Ca=2·0.
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Figure 5. Effect of Re on the growth rate of the Yih mode (broken line) and Marangoni mode (solid line) for k=
0·37, Ma=1·0, r=2·0, λ=0·5, and s=Ca=2·0.
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Figure 6. Dependence of the growth rate on the wave number for the Yih mode (broken line) and Marangoni mode
(solid line), for Re=20·0, Ma=1·0, r=2·0, λ=0·5, and s=Ca=2·0. (b) Close-up of (a) near k=0.

Figure 6 illustrates the dependence of the growth rates of the Yih and Marangoni modes
on the wave number, for a fixed Reynolds number Re = 20·0. The close-up near k= 0, pre-
sented in Figure 6(b), shows that the Yih mode dominates up to k=0·082. Beyond this value,
the overall stability of the two-layer flow is determined by the Marangoni mode. In particular,
the solid line crosses below the wave number axis at k≈0·18 and re-crosses it at k≈0·46, pro-
ducing a short range of small stable wave numbers. A much longer period of unstable modes
follows before the solid line once more crosses the axis at k≈4·82. These results clearly dem-
onstrate the crucial role of the surfactant. For general combinations of the Reynolds number
and wave number, the surfactant either provokes instability or significantly lowers the rate of
decay of infinitesimal perturbations.

Blyth and Pozrikidis [5] observed that, under conditions of Stokes flow and when the
undisturbed interface lies midway between the channel walls, the two-layer flow is stable to
small wavelength perturbations. Yih’s results show that under the same conditions, perturba-
tions of sufficiently small wave number in the absence of surfactant grow for all Reynolds
numbers. The neutral curve shown in Figure 7 indicates that, when r=1 and with both iner-
tia and surfactant present, the flow is unstable to small wave number perturbations. However,
beyond the critical Reynolds number Re≈4·8, the growth rate is negative for a small band of
wave numbers subtended from zero to a critical value, so that small wave number disturbances
are stabilized by the surfactant.
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Figure 7. Neutral stability curve for layers of equal thicknesses, r=1, and Ma=1·0, λ=0·5 and s=Ca=2·0. Since
the flow is stable at Re=0, the upper curve approaches the origin.

Halpern and Frenkel [4] noted that, at zero Reynolds number, the Yih and Marangoni
modes both have negative growth rates when the viscosity ratio is increased beyond λ≈ r2.
Raising λ towards this value for arbitrary Reynolds numbers, we find a significant change
in the topology of the neutral stability curve. In particular, the upper curve bulges outwards
close to Re = 0, while the lower stable region extends to the left until, eventually, the two
make contact at a point, as shown in Figure 8. Thereafter, as λ is raised, the two curves
split apart leaving an island of unstable modes around the origin, which is separated from
a much larger hoop of unstable modes to the right. The island of unstable modes shrinks as
λ is raised further, and ultimately disappears at λ≈4·0= r2.

5. Numerical simulation of the finite-amplitude motion

In Part I [1], a numerical method was implemented to describe the non-linear stages of the
instability beyond the confines of linear stability. The algorithm combines Peskin’s immersed-
interface method with the diffuse-interface approximation, wherein the step discontinuity in
the fluid properties is replaced by a transition zone defined in terms of a mollifying func-
tion. A finite-difference method is used to integrate the generalized Navier–Stokes equation
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Figure 8. Neutral stability curves for Ma=1·0, r=2·0, s=Ca=2·0 and (a) λ=3·15778 and (b) λ=3·25.
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incorporating the jump in the interfacial traction, and a finite-volume method is used to solve
the surfactant transport equation along the evolving interface.

In the numerical simulations, it is desirable to begin with an initial condition where the
interface is flat, and the perturbation is introduced by disturbing the surfactant concentration,
the flow, or both. Unfortunately, this initial condition is inconsistent with a monochromatic
normal-mode perturbation, which requires a non-zero initial interfacial and surfactant con-
centration amplitude, both growing at an exponential rate at subsequent times. In particular,
the domain perturbation embedded in the linear stability analysis to transfer the matching
conditions from the perturbed to the unperturbed interface position frustrates the initializa-
tion of the velocity field at the finite-difference nodes near the interface.

To overcome this difficulty, we use an initial condition that is composed of a linear com-
bination of two monochromatic normal modes, one associated with the Yih instability, and
the second associated with the Marangoni instability. In the two-mode perturbation, the ini-
tial interfacial shape and perturbation in the surfactant concentration are given by the real
parts of

y(x)= ε
(
A1 −wA2

)
exp(ikx), �(1)(x)= ε

(
�1 −w�2

)
exp(ikx), (5.1)

where the subscript 1 or 2 denotes the first or second normal mode, and w is an arbitrary
parameter determining the relative weight of the two modes. Without loss of generality, we
may assume that the interface amplitudes A1 and A2 are real. The corresponding perturba-
tion streamfunction is given by

ψ(1)(x, y)= ε
(
f1(y)−wf2(y)

)
exp(ikx), (5.2)

where the eigenfunctions f1(y) and f2(y) arise by solving the Orr–Sommerfeld Equation. To
obtain an initially flat interface, we set w=A1/A2. With this choice, the initial surfactant con-
centration is given by

�(1)(x)= ε A1

(
β1 −β2

)
exp(ikx), (5.3)

where β1 ≡�1/A1 and β2 ≡�2/A2 are the complex amplitude ratios.
As a first test case, we consider a two-layer flow with r=2, λ=1, Ca=2, Re=1·333, and

Ma = 1·0, and compute the evolution of a perturbation with wave number k= 2π/9. Under
these conditions, the Yih normal mode decays with dimensionless rate −0.214921, whereas the
Marangoni normal mode grows with dimensionless rate 0·097853. Figure 9(a) illustrates the
structure of the initial velocity field corresponding to the two-mode perturbation. The sinu-
soidal curves represent the predicted position of the interface at times t=0 (flat), 10, 20, and
30, for initial amplitude in the surfactant concentration 0·10. Note that in this figure x and
y are dimensional variables reduced by the disturbance wavelength L.

The solid lines in Figure 9(b) represent the results of the numerical simulation, and the
broken lines represent the predictions of linear theory at a sequence of time intervals t =
0,1,2, . . . . The agreement between the numerical and theoretical predictions is excellent in the
early stage of the motion. Both show that the nodes of the developing interfacial wave drift
along the x axis due to the different phase velocity of the two components of the bimodal
initial perturbation. Moreover, the simulation reveals that the growing sinusoidal wave tends
to steepen under the action of the shear flow. Figure 9(c) describes the nonlinear stages of
the instability leading to the development of a saw-tooth interfacial profile. At long times,
the interface tends to overturn, as wisps of the upper fluid penetrate the lower fluid, and vice
versa.
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Figure 9. (a) Structure of the two-mode perturbation for a flat interface, and illustration of the linear growth of the
interface for r=2, λ=1, Ca=2, Re=1·333, and Ma=1·0. (b) Comparison between the results of the numerical sim-
ulation (solid lines) and predictions of linear theory (broken lines), Profiles are shown at times t = 0 (flat), 1, 2, . . .
(c) Interface profiles at times t = 0 (flat), 1, 5, 10, . . . , showing the large deformation.
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Figure 10. Growing interfacial waves due to the combined Yih-Marangoni instability for r = 1·5, λ= 0·5, Ca = 2,
Re = 10·0, Ma = 1·0, at times t = 0 (flat interface), 1, 2, . . . . The dashed line represents the predictions of linear
theory at t=1·0.

Similar results are obtained for different flow conditions. For example, Figure 10 illustrates
evolving interfacial profiles for r=1·5, λ=0·5, Ca=2, Re=10·0, and Ma=1·0, and a pertur-
bation with wave number k=1·0. Note that, in this figure, x and y are dimensional variables
reduced by the disturbance wave length L. Under these conditions, the Yih and Marangoni
modes grow with respective dimensionless rates −0 ·47993 and 0·19655, and travel with differ-
ent phase velocities. In this simulation, the initial amplitude in the surfactant concentration is
0·5. The dashed line represents the predictions of linear theory at t = 1 · 0, which is in excel-
lent agreement with the results of the simulation. As the amplitude of the interface grows, the
crests of the developing waves tend to steepen and eventually overturn.
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6. Discussion

The effect of inertia on the instability of the two-layer, shear-driven channel flow with a
surfactant-laden interface was investigated by a linear stability analysis. Equal-density flu-
ids have been considered in order to isolate the effects of the viscosity stratification and
the induced Marangoni forces at the interface. In the event of small interfacial deflections,
the evolution of normal-mode perturbations is governed by a two-fluid generalization of the
Orr–Sommerfeld equation. Yih [13] demonstrated that, for a clean interface in the absence of
surfactant, arbitrarily small inertia is sufficient to destabilize the flow. With both inertia and
surfactant present, Marangoni forces act either to destabilize the flow, or else to significantly
lower the decay rate of infinitesimal disturbances.

In the first part of this work, we conducted a numerical investigation of the
Orr–Sommerfeld equation using the Chebyschev tau method, and computed growth rates for
arbitrary wave numbers and Reynolds numbers. The results obtained for a clean interface
agree with those previously given by Yih [13] and Renardy [14]. When surfactant is present,
the Yih mode dominates the instability at small wave numbers, while the Marangoni mode
controls the instability at moderate to large wave numbers. Neutral stability curves plotted at
sample parameter values show that, for Reynolds numbers lower than a critical value, a range
of small wave numbers subtended from zero exists with positive growth rates, corresponding
to instability. Beyond the critical Reynolds number, a slender island of stable modes appears
covering small to moderate wave numbers. By raising the viscosity contrast between the two
fluids, a dramatic change in the topology of the neutral curve occurs, leaving a large hoop of
unstable modes covering a wide area of parameter space, and a small pool of unstable modes
encompassing the origin. As the viscosity contrast is raised further, the small pool shrinks
towards the origin and eventually disappears.

In the second part of this work, the nonlinear evolution of the interfacial waves has been
examined by numerical methods. Recently, Blyth and Pozrikidis [5] used a boundary-element
method to conduct simulations for waves of finite-amplitude under conditions of Stokes flow,
and demonstrated nonlinear saturation and the occurrence of wave overturning. In the pres-
ence of inertia, we have followed the nonlinear evolution of finite-amplitude interfacial waves
numerically using a combination of Peskin’s immersed-interface method and the diffuse-inter-
face approximation. Trial simulations provided excellent agreement with the predictions of the
linear theory during the early stages of the evolution. As nonlinear effects come into play, the
interfacial waves begin to steepen and develop characteristic saw-tooth profiles. Eventually the
waves overturn and are expected to break.

The present results emphasize the important role played by inertia in determining the sta-
bility of the two-layer flow when Marangoni forces are active. Increased inertia widens the
range of unstable wave numbers, and makes the flow more susceptible to linear instability.
This may lead to nonlinear growth and ultimately to wave breaking. However, increasing the
level of inertia also opens a narrow window of stable modes of large wave length, and so in
this sense provides a stabilizing effect. In the event of fluid layers of equal thicknesses, a small
amount of inertia destabilizes the system immediately.

The stability characteristics at high Reynolds number have not been examined in detail.
When the viscosity ratio is high, the hoop of unstable wave numbers subtended from a critical
Reynolds number is reminiscent of those encountered in more classical parallel flow studies.
Our numerical results suggest that the upper branch does not approach the horizontal axis as
the Reynolds number is raised. For increasing Reynolds number, the range of unstable wave
numbers may widen indefinitely, or begin to shrink; in fact, the upper branch may even attach
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to the lower branch to form a closed loop. A boundary layer analysis combined with a more
thorough numerical investigation at large Reynolds number would prove useful in addressing
these questions.

Acknowledgement

Support for this research was provided by the National Science Foundation.

References

1. C. Pozrikidis, Effect of inertia on the Marangoni instability of two-layer channel flow, Part I: numerical
simulations. J. Engng. Math. 50 (2004) 311–327.

2. C. Pozrikidis, Instability of multi-layer channel and film flows. Adv. Appl. Mech. 40 (2004) In press.
3. A.L. Frenkel and D. Halpern, Stokes-flow instability due to interfacial surfactant. Phys. Fluids. 14 (2002)

45–48.
4. D. Halpern and A.L. Frenkel, Destabilization of a creeping flow by interfacial surfactant: linear theory

extended to all wave numbers. J. Fluid Mech. 485 (2003) 191–220.
5. M.G. Blyth and C. Pozrikidis, Effect of surfactants on the stability of two-layer channel flow.

J. Fluid Mech. 505 (2004) 59–86.
6. X. Li and C. Pozrikidis, The effect of surfactants on drop deformation and on the rheology of dilute emul-

sions in Stokes flow. J. Fluid Mech. 341 (1997) 165–194.
7. S. Yon and C. Pozrikidis, A finite-volume/boundary-element method for flow past interfaces in the presence

of surfactants, with application to shear flow past a viscous drop. Comput. Fluids. 27 (1998) 879–902.
8. S.A. Orszag, Accurate solution of the Orr–Sommerfeld stability equation. J. Fluid Mech. 50 (1971) 689–703.
9. J.J. Dongarra, B. Straughan and D.W. Walker, Chebyshev tau-QZ algorithm methods for calculating spectra

of hydrodynamic stability problems. Appl. Num. Math. 22 (1996) 399–434.
10. D. Gottlieb and S.A. Orszag, Numerical Analysis of Spectral Methods. Philadelphia: SIAM (1977) 172 pp.
11. A.P. Gallagher and A.McD. Mercer, On the behaviour of small disturbances in plane Couette flow. J. Fluid

Mech. 13 (1962) 91–100.
12. C. Pozrikidis, Introduction to Theoretical and Computational Fluid Dynamics. New York: Oxford University

Press (1997) 675 pp.
13. C.S. Yih, Instability due to viscosity stratification. J. Fluid Mech. 27 (1967) 337–352.
14. Y. Renardy, Instability at the interface between two shearing fluids in a channel. Phys. Fluids. 29 (1985)

3441–3443.
15. A.P. Hooper and W.G.C. Boyd, Shear-flow instability at the interface between two viscous fluids.

J. Fluid Mech. 128 (1983) 507–528.


